2 research outputs found

    Biomechanical Models of Human Upper and Tracheal Airway Functionality

    Get PDF
    The respiratory tract, in other words, the airway, is the primary airflow path for several physiological activities such as coughing, breathing, and sneezing. Diseases can impact airway functionality through various means including cancer of the head and neck, Neurological disorders such as Parkinson\u27s disease, and sleep disorders and all of which are considered in this study. In this dissertation, numerical modeling techniques were used to simulate three distinct airway diseases: a weak cough leading to aspiration, upper airway patency in obstructive sleep apnea, and tongue cancer in swallow disorders. The work described in this dissertation, therefore, divided into three biomechanical models, of which fluid and particulate dynamics model of cough is the first. Cough is an airway protective mechanism, which results from a coordinated series of respiratory, laryngeal, and pharyngeal muscle activity. Patients with diminished upper airway protection often exhibit cough impairment resulting in aspiration pneumonia. Computational Fluid Dynamics (CFD) technique was used to simulate airflow and penetrant behavior in the airway geometry reconstructed from Computed Tomography (CT) images acquired from participants. The second study describes Obstructive Sleep Apnea (OSA) and the effects of dilator muscular activation on the human retro-lingual airway in OSA. Computations were performed for the inspiration stage of the breathing cycle, utilizing a fluid-structure interaction (FSI) method to couple structural deformation with airflow dynamics. The spatiotemporal deformation of the structures surrounding the airway wall was predicted and found to be in general agreement with observed changes in luminal opening and the distribution of airflow from upright to supine posture. The third study describes the effects of cancer of the tongue base on tongue motion during swallow. A three-dimensional biomechanical model was developed and used to calculate the spatiotemporal deformation of the tongue under a sequence of movements which simulate the oral stage of swallow

    Computational Modelling Of Cough Function And Airway Penetrant Behavior In Patients With Disorders Of Laryngeal Function

    No full text
    Objective/Hypothesis: Patients with laryngeal disorders often exhibit changes to cough function contributing to aspiration episodes. Two primary cough variables (peak cough flow: PCF and compression phase duration: CPD) were examined within a biomechanical model to determine their impact on characteristics that impact airway compromise. Study Design: Computational study. Methods: A Computational Fluid Dynamics (CFD) technique was used to simulate fluid flow within an upper airway model reconstructed from patient CT images. The model utilized a finite-volume numerical scheme to simulate cough-induced airflow, allowing for turbulent particle interaction, collision, and break-up. Liquid penetrants at 8 anatomical release locations were tracked during the simulated cough. Cough flow velocity was computed for a base case and four simulated cases. Airway clearance was evaluated through assessment of the fate of particles in the airway following simulated cough. Results: Peak-expiratory phase resulted in very high airway velocities for all simulated cases modelled. The highest velocity predicted was 49.96 m/s, 88 m/s, and 117 m/s for Cases 1 and 3, Base case, and Cases 2 and 4 respectively. In the base case, 25% of the penetrants cleared the laryngeal airway. The highest percentage (50%) of penetrants clearing the laryngeal airway are observed in Case 2 (with −40% CPD, +40% PCF), while only 12.5% cleared in Case 3 (with +40% CPD, −40% PCF). The proportion that cleared in Cases 1 and 4 was 37.5%. Conclusion: Airway modelling may be beneficial to the study of aspiration in patients with impaired cough function including those with upper airway and neurological diseases. It can be used to enhance understanding of cough flow dynamics within the airway and to inform strategies for treatment with “cough-assist devices” or devices to improve cough strength. Level of Evidence: N/A
    corecore